geometric_kernels.feature_maps.deterministic ============================================ .. py:module:: geometric_kernels.feature_maps.deterministic .. autoapi-nested-parse:: This module provides the :class:`DeterministicFeatureMapCompact`, a Karhunen-Loève expansion-based feature map for those :class:`~.spaces.DiscreteSpectrumSpace`\ s, for which the eigenpairs are explicitly known. Module Contents --------------- .. py:class:: DeterministicFeatureMapCompact(space, num_levels) Bases: :py:obj:`geometric_kernels.feature_maps.base.FeatureMap` Deterministic feature map for :class:`~.spaces.DiscreteSpectrumSpace`\ s for which the actual eigenpairs are explicitly available. :param space: A :class:`~.spaces.DiscreteSpectrumSpace` space. :param num_levels: Number of levels in the kernel approximation. .. py:method:: __call__(X, params, normalize = None, **kwargs) :param X: [N, ...] points in the space to evaluate the map on. :param params: Parameters of the kernel (length scale and smoothness). :param normalize: Normalize to have unit average variance (if omitted or None, follows the standard behavior of :class:`~.kernels.MaternKarhunenLoeveKernel`). :param ``**kwargs``: Unused. :return: `Tuple(None, features)` where `features` is an [N, O] array, N is the number of inputs and O is the dimension of the feature map. .. note:: The first element of the returned tuple is the simple None and should be ignored. It is only there to support the abstract interface: for some other subclasses of :class:`FeatureMap`, this first element may be an updated random key.