geometric_kernels.frontends.gpjax ================================= .. py:module:: geometric_kernels.frontends.gpjax .. autoapi-nested-parse:: GPJax kernel wrapper. A tutorial on how to use this wrapper to run Gaussian process regression on a geometric space is available in the :doc:`frontends/GPJax.ipynb ` notebook. Module Contents --------------- .. py:class:: GPJaxGeometricKernel Bases: :py:obj:`gpjax.kernels.AbstractKernel` GPJax wrapper for :class:`~.kernels.BaseGeometricKernel`. A tutorial on how to use this wrapper to run Gaussian process regression on a geometric space is available in the :doc:`frontends/GPJax.ipynb ` notebook. .. note:: Remember that the `base_kernel` itself does not store any of its hyperparameters (like `lengthscale` and `nu`). If you do not set them manually—when initializing the object or after, by setting the properties—this wrapper will use the values provided by `base_kernel.init_params`. .. note:: Unlike the frontends for GPflow and GPyTorch, GPJaxGeometricKernel does not have the `trainable_nu` parameter which determines whether or not the smoothness parameter nu is to be optimized over. By default, it is not trainable. If you want to make it trainable, do :code:`kernel = kernel.replace_trainable(nu=False)` on an instance of the `GPJaxGeometricKernel`. :param base_kernel: The kernel to wrap. :type base_kernel: geometric_kernels.kernels.BaseGeometricKernel :param name: Optional kernel name (inherited from `gpjax.kernels.AbstractKernel`). Defaults to "Geometric Kernel". :type name: str :param lengthscale: Initial value of the length scale. If not given or set to None, uses the default value of the `base_kernel`, as provided by its `init_params` method. :type lengthscale: Union[ScalarFloat, Float[Array, " D"]] :param nu: Initial value of the smoothness parameter nu. If not given or set to None, uses the default value of the `base_kernel`, as provided by its `init_params` method. :type nu: ScalarFloat :param variance: Initial value of the variance (outputscale) parameter. Defaults to 1.0. :type variance: ScalarFloat .. py:method:: __call__(x, y) Compute the cross-covariance matrix between two batches of vectors (or batches of matrices) of inputs. :param x: A batch of N inputs, each of which is a matrix of size D1xD2, or a vector of size D2 if D1 is absent. :param y: A batch of M inputs, each of which is a matrix of size D1xD2, or a vector of size D2 if D1 is absent. :return: The N x M cross-covariance matrix. .. py:property:: space :type: beartype.typing.Union[geometric_kernels.spaces.Space, beartype.typing.List[geometric_kernels.spaces.Space]] Alias to the `base_kernel`\ s space property.