geometric_kernels.utils.manifold_utils ====================================== .. py:module:: geometric_kernels.utils.manifold_utils .. autoapi-nested-parse:: Utilities for dealing with manifolds. Module Contents --------------- .. py:function:: manifold_laplacian(x, manifold, egrad, ehess) Computes the manifold Laplacian of a given function at a given point x. The manifold Laplacian equals the trace of the manifold Hessian, i.e., $\Delta_M f(x) = \sum_{i=1}^{d} \nabla^2 f(x_i, x_i)$, where $[x_i]_{i=1}^{d}$ is an orthonormal basis of the tangent space at x. .. warning:: This function only works for hyperspheres out of the box. We will need to change that in the future. .. todo:: See warning above. :param x: A point on the manifold at which to compute the Laplacian. :param manifold: A geomstats manifold. :param egrad: Euclidean gradient of the given function at x. :param ehess: Euclidean Hessian of the given function at x. :return: Manifold Laplacian of the given function at x. See :cite:t:`jost2011` (Chapter 3.1) for mathematical details. .. py:function:: tangent_onb(manifold, x) Computes an orthonormal basis on the tangent space at x. .. warning:: This function only works for hyperspheres out of the box. We will need to change that in the future. .. todo:: See warning above. :param manifold: A geomstats manifold. :param x: A point on the manifold. :return: An [d, d]-shaped array containing the orthonormal basis on `manifold` at `x`.