Coverage for tests/spaces/test_hypercube_graph.py: 100%

32 statements  

« prev     ^ index     » next       coverage.py v7.11.3, created at 2025-11-16 21:43 +0000

1import lab as B 

2import numpy as np 

3import pytest 

4from plum import Tuple 

5 

6from geometric_kernels.kernels import MaternGeometricKernel 

7from geometric_kernels.spaces import HypercubeGraph 

8from geometric_kernels.utils.kernel_formulas import hypercube_graph_heat_kernel 

9 

10from ..helper import check_function_with_backend 

11 

12 

13@pytest.fixture(params=[1, 2, 3, 5, 10]) 

14def inputs(request) -> Tuple[B.Numeric]: 

15 """ 

16 Returns a tuple (space, eigenfunctions, X, X2) where: 

17 - space is a HypercubeGraph object with dimension equal to request.param, 

18 - eigenfunctions is the respective Eigenfunctions object with at most 5 levels, 

19 - X is a random sample of random size from the space, 

20 - X2 is another random sample of random size from the space, 

21 - weights is an array of positive numbers of shape (eigenfunctions.num_levels, 1). 

22 """ 

23 d = request.param 

24 space = HypercubeGraph(d) 

25 eigenfunctions = space.get_eigenfunctions(min(space.dim + 1, 5)) 

26 

27 key = np.random.RandomState(0) 

28 N, N2 = key.randint(low=1, high=min(2**d, 10) + 1, size=2) 

29 key, X = space.random(key, N) 

30 key, X2 = space.random(key, N2) 

31 

32 # These weights are used for testing the weighted outerproduct, they 

33 # should be positive. 

34 weights = np.random.rand(eigenfunctions.num_levels, 1) ** 2 + 1e-5 

35 

36 return space, eigenfunctions, X, X2, weights 

37 

38 

39def test_numbers_of_eigenfunctions(inputs): 

40 space, eigenfunctions, _, _, _ = inputs 

41 num_levels = eigenfunctions.num_levels 

42 

43 # If the number of levels is maximal, check that the number of 

44 # eigenfunctions is equal to the number of binary vectors of size `space.dim`. 

45 if num_levels == space.dim + 1: 

46 assert eigenfunctions.num_eigenfunctions == 2**space.dim 

47 

48 

49@pytest.mark.parametrize("lengthscale", [1.0, 5.0, 10.0]) 

50@pytest.mark.parametrize("backend", ["numpy", "tensorflow", "torch", "jax"]) 

51def test_against_analytic_heat_kernel(inputs, lengthscale, backend): 

52 space, _, X, X2, _ = inputs 

53 lengthscale = np.array([lengthscale]) 

54 result = hypercube_graph_heat_kernel(lengthscale, X, X2) 

55 

56 kernel = MaternGeometricKernel(space) 

57 

58 # Check that MaternGeometricKernel on HypercubeGraph with nu=infinity 

59 # coincides with the closed form expression for the heat kernel on the 

60 # hypercube graph. 

61 check_function_with_backend( 

62 backend, 

63 result, 

64 kernel.K, 

65 {"nu": np.array([np.inf]), "lengthscale": lengthscale}, 

66 X, 

67 X2, 

68 atol=1e-2, 

69 )