Bibliography¶
P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, 2008.
Mathieu Alain, So Takao, Brooks Paige, and Marc Peter Deisenroth. Gaussian Processes on Cellular Complexes. arXiv preprint arXiv:2311.01198, 2023.
Iskander Azangulov, Andrei Smolensky, Alexander Terenin, and Viacheslav Borovitskiy. Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case. Journal of Machine Learning Research, 25(280):1–52, 2024.
Iskander Azangulov, Andrei Smolensky, Alexander Terenin, and Viacheslav Borovitskiy. Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces. Journal of Machine Learning Research, 25(281):1–51, 2024.
Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Deisenroth, and Nicolas Durrande. Matérn Gaussian Processes on Graphs. In International Conference on Artificial Intelligence and Statistics. 2021.
Viacheslav Borovitskiy, Mohammad Reza Karimi, Vignesh Ram Somnath, and Andreas Krause. Isotropic Gaussian Processes on Finite Spaces of Graphs. In International Conference on Artificial Intelligence and Statistics. 2023.
Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Peter Deisenroth. Matérn Gaussian processes on Riemannian manifolds. In Advances in Neural Information Processing Systems. 2020.
Yaiza Canzani. Analysis on manifolds via the Laplacian. Lecture Notes available at: http://www.math.harvard.edu/canzani/docs/Laplacian.pdf, 2013.
Sam Coveney, Cesare Corrado, Caroline H Roney, Daniel O’Hare, Steven E Williams, Mark D O’Neill, Steven A Niederer, Richard H Clayton, Jeremy E Oakley, and Richard D Wilkinson. Gaussian process manifold interpolation for probabilistic atrial activation maps and uncertain conduction velocity. Philosophical Transactions of the Royal Society A, 378(2173):20190345, 2020.
Jürgen Jost. Riemannian geometry and geometric analysis. Springer, 2011.
Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-correcting codes. Elsevier, 1977.
Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems. 2007.
Carl Edward Rasmussen and Christopher K I Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
Nicholas Sharp and Keenan Crane. A Laplacian for nonmanifold triangle meshes. In Computer Graphics Forum. 2020.
Arno Solin and Simo Särkkä. Hilbert space methods for reduced-rank Gaussian process regression. Statistics and Computing, 30(2):419–446, 2020.
Danica J Sutherland and Jeff Schneider. On the Error of Random Fourier Features. In Uncertainty in Artificial Intelligence. 2015.
Maosheng Yang, Viacheslav Borovitskiy, and Elvin Isufi. Hodge-Compositional Edge Gaussian Processes. In International Conference on Artificial Intelligence and Statistics. 2024.