[1]:
# To run this in Google Colab, uncomment the following line
# !pip install geometric_kernels

# If you want to use a version of the library from a specific branch on GitHub,
# say, from the "devel" branch, uncomment the line below instead
# !pip install "git+https://github.com/geometric-kernels/GeometricKernels@devel"

Matérn and Heat Kernels on the Special Orthogonal Group \(\mathrm{SO}(n)\)

This notebook shows how define and evaluate kernels on the special orthogonal group \(\mathrm{SO}(3)\) that consists of \(3 \times 3\) orhogonal matrices with unit determinant.

Handling the special orthogonal group \(\mathrm{SO}(n)\) for \(n \geq 4\) is the same. We work with \(\mathrm{SO}(3)\) here because (1) it is the most well known case (2) it is easier (although still non-trivial) to visualize.

Note: the “points” in the special orthogonal group \(\mathrm{SO}(n)\) are represented by matrices (arrays of the suitable backend) in \(\mathbb{R}^{n \times n}\) whose determinant is equal to \(1\).

We use the numpy backend here.

Contents

Basics

[2]:
# Import a backend, we use numpy in this example.
import numpy as np

# Import the geometric_kernels backend.
import geometric_kernels

# Note: if you are using a backend other than numpy,
# you _must_ uncomment one of the following lines
# import geometric_kernels.tensorflow
# import geometric_kernels.torch
# import geometric_kernels.jax

# Import a space and an appropriate kernel.
from geometric_kernels.spaces import SpecialOrthogonal
from geometric_kernels.kernels import MaternGeometricKernel

import matplotlib as mpl
import matplotlib.pyplot as plt
INFO (geometric_kernels): Numpy backend is enabled, as always. To enable other backends, don't forget `import geometric_kernels.*backend name*`.

Defining a Space

First we create a GeometricKernels space that corresponds to the special orthogonal group \(\mathrm{SO}(3)\), a subset of the set of all \(3 \times 3\) matrices \(\mathbb{R}^{3 \times 3}\).

[3]:
so = SpecialOrthogonal(n=3)

Defining a Kernel

First, we create a generic Matérn kernel.

To initialize MaternGeometricKernel you just need to provide a Space object, in our case this is the so we have just created above.

There is also an optional second parameter num which determines the order of approximation of the kernel. There is a sensible default value for each of the spaces in the library, so change it only if you know what you are doing.

A brief account on theory behind the kernels on compact manifold like (which \(\mathrm{SO}(n)\) are examples of) can be found on these documentation pages: one, two.

[4]:
kernel = MaternGeometricKernel(so)

To support JAX, our classes do not keep variables you might want to differentiate over in their state. Instead, some methods take a params dictionary as input, returning its modified version.

The next line initializes the dictionary of kernel parameters params with some default values.

Note: our kernels do not provide the outputscale/variance parameter frequently used in Gaussian processes. However, it is usually trivial to add it by multiplying the kernel by an (optimizable) constant.

[5]:
params = kernel.init_params()
print('params:', params)
params: {'lengthscale': array(1.), 'nu': array(inf)}

To define two different kernels, Matern-3/2 and Matern-∞ (aka heat, RBF, squared exponential, diffusion), we need two different versions of params:

[6]:
params["lengthscale"] = np.array([0.5])
params_32  = params.copy()
params_inf = params.copy()
del params
params_32["nu"]  = np.array([3/2])
params_inf["nu"] = np.array([np.inf])

Now two kernels are defined and we proceed to evaluating both on a set of random inputs.

Evaluating Kernels on Random Inputs

We start by sampling 10 (uniformly) random points in \(\mathrm{SO}(3)\). An explicit key parameter is needed to support JAX as one of the backends.

[7]:
key = np.random.RandomState(1234)

key, xs = so.random(key, 10)

print(xs)
[[[-0.83118121 -0.53251727  0.15988481]
  [-0.05989292 -0.20013482 -0.97793604]
  [ 0.55276635 -0.82241803  0.13445429]]

 [[-0.24549041 -0.96836999 -0.04465438]
  [-0.07519823 -0.02690221  0.99680565]
  [-0.96647798  0.24806416 -0.06621548]]

 [[-0.7316939   0.30139255  0.61138087]
  [-0.32058557  0.63938043 -0.69886877]
  [-0.6015388  -0.7073579  -0.37120866]]

 [[-0.64400808 -0.75505391 -0.12307395]
  [-0.75449949  0.60029278  0.2652906 ]
  [-0.1264283   0.26370852 -0.95628118]]

 [[ 0.16603267 -0.8784055   0.44814834]
  [ 0.98529484  0.12918269 -0.11182982]
  [ 0.04033892  0.46012565  0.88693695]]

 [[-0.1476533   0.58885089  0.79464025]
  [ 0.06351094  0.80743353 -0.58653001]
  [-0.9869979  -0.03613474 -0.1566187 ]]

 [[ 0.76324266 -0.64597696  0.01320642]
  [ 0.2130557   0.23233043 -0.94901519]
  [ 0.60997369  0.72714259  0.31495357]]

 [[-0.79343507 -0.45989196 -0.3986981 ]
  [-0.08361101  0.73119258 -0.67702778]
  [ 0.60288472 -0.50384203 -0.61860587]]

 [[-0.24647287  0.67082793  0.69945766]
  [ 0.81370207 -0.24879919  0.5253455 ]
  [ 0.52644094  0.69863356 -0.48453183]]

 [[ 0.75167902  0.6026576   0.26792249]
  [-0.62726116  0.7787669   0.00809659]
  [-0.2037697  -0.17414341  0.96340645]]]

Now we evaluate the two kernel matrices.

[8]:
kernel_mat_32  = kernel.K(params_32,  xs, xs)
kernel_mat_inf = kernel.K(params_inf, xs, xs)

Finally, we visualize these matrices using imshow.

[9]:
# find common range of values
minmin = np.min([np.min(kernel_mat_32), np.min(kernel_mat_inf)])
maxmax = np.max([np.max(kernel_mat_32), np.max(kernel_mat_inf)])

fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2)
cmap = plt.get_cmap('viridis')

ax1.imshow(kernel_mat_32, vmin=minmin, vmax=maxmax, cmap=cmap)
ax1.set_title('k_32')
ax1.set_axis_off()

ax2.imshow(kernel_mat_inf, vmin=minmin, vmax=maxmax, cmap=cmap)
ax2.set_title('k_inf')
ax2.set_axis_off()

# add space for color bar
fig.subplots_adjust(right=0.85)
cbar_ax = fig.add_axes([0.88, 0.25, 0.02, 0.5])

# add colorbar
sm = plt.cm.ScalarMappable(cmap=cmap,
                           norm=plt.Normalize(vmin=minmin, vmax=maxmax))
fig.colorbar(sm, cax=cbar_ax)

plt.show()
../_images/examples_SpecialOrthogonal_22_0.png

Visualize Kernels

It is hard to visualize functions on \(\mathrm{SO}(n)\). Why so? Well, we have \(\dim \left(\mathrm{SO}(n)\right) = n(n-1)/2\), thus even \(\dim \left(\mathrm{SO}(2)\right) = 3\) is greater than \(2\). Functions are only easy to visualize on domains with dimension not higher than \(2\).

To get some understanding of how kernels and samples of Gaussian processes on \(\mathrm{SO}(n)\) look like, we will do something like visualizing \(f: \mathbb{R}^n \to \mathbb{R}\) by examining the plots of \(\alpha \to f(\alpha \mathbf{v})\) for random vectors \(\mathbf{v}\). In our case, we will take a random matrix \(\mathbf{U} \in \mathrm{SO}(n)\) and visualize functions \(\alpha \to f(\mathbf{E}_{\mathbf{U}}(\alpha))\), \(\alpha \in [0, 2 \pi)\) where \(\mathbf{E}_{\mathbf{U}}(\alpha) = \mathbf{U}^{\top} \mathbf{E}(\alpha) \mathbf{U}\) and

\[\begin{split}\mathbf{E}(\alpha) = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & \dots & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & 0 & \ddots & \vdots\\ 0 & 0 & 0 & \dots & 1 \\ \end{bmatrix}\end{split}\]

is the standard embedding of the one-dimensional rotation group \(\mathrm{SO}(2)\) (which can be regarded as the circle \(\mathbb{T}\)) into \(\mathrm{SO}(n)\). Intuitively, this corresponds to rotating by angle \(\alpha\) around a random axis in \(\mathbb{R}^n\). To better reflect the structure of \(\alpha\), we will actually treat it as a point on the circle, rather than an angle.

We will plot the functions \(k_{\nu, \kappa}(\mathbf{I}, \mathbf{E}_{\mathbf{U}}(\alpha))\).

In practice, we visualize \(k_{\nu, \kappa}(\) base_point \(, x)\) for $x \in `$ ``other_points1` or $x \in `$ ``other_points2`. The base_point is simply the identity matrix \(\mathbf{I}\). The other_points1 and other_points2 are defined by the _NUM_ANGLES uniform discretization of the unit circle.

We define base_point, other_points, and other_points2 in the next cell.

[10]:
# define discretization
_NUM_ANGLES = 128

key, U = so.random(key, 2)
U1 = U[0, :]
U2 = U[1, :]

# generate a grid on [0, 2 \pi)
angles = np.linspace(0, 2*np.pi, num=_NUM_ANGLES)
embedding = np.broadcast_to(np.eye(3), (_NUM_ANGLES, 3, 3)).copy()
embedding[:, 0, 0] = np.cos(angles)
embedding[:, 0, 1] = -np.sin(angles)
embedding[:, 1, 0] = np.sin(angles)
embedding[:, 1, 1] = np.cos(angles)

base_point = embedding[[0], :, :]

def conj_batch(U, emb):
    """ Compute U^T * emb[i, :] * U for all i.
    :param U:   [3, 3] array
    :param emb: [N, 3, 3] array

    :return:    [N, 3, 3] array
    """
    return np.tensordot(np.tensordot(emb, U, axes=([2], [0])),
                        U.T, axes=([1], [1])
                       )

other_points1, other_points2 = conj_batch(U1, embedding), conj_batch(U2, embedding)

The next cell evaluates \(k_{\nu, \kappa}(\) base_point \(, x)\) for $x \in `$ ``other_points1` and $x \in `$ ``other_points2`, for \(\nu\) either \(3/2\) or \(\infty\).

[11]:
kernel_vals_32_1  = kernel.K(params_32,  base_point, other_points1)
kernel_vals_32_2  = kernel.K(params_32,  base_point, other_points2)
kernel_vals_inf_1 = kernel.K(params_inf, base_point, other_points1)
kernel_vals_inf_2 = kernel.K(params_inf, base_point, other_points2)

Finally, we are ready to plot the results.

[12]:
x_circle = np.cos(angles)
y_circle = np.sin(angles)
z_circle = np.zeros_like(angles) # z=0 for the circle

# Red ball position
red_ball_position = (x_circle[0], y_circle[0], z_circle[0])


def plot_kernel(ax, values, title):
    # Draw the unit circle
    ax.plot(x_circle, y_circle, z_circle, linestyle='dashed', color='gray')
    # Draw the red ball
    ax.scatter(*red_ball_position, color="r", s=50)
    # Draw the vertical dashed line
    ax.plot([1, 1], [0, 0], np.linspace(0, values[0, 0], 2), linestyle='dashed', color='gray')
    # Plot the new function evaluated only on the unit circle
    ax.plot(x_circle, y_circle, values[0, :], color='b')
    # Set the viewing angle for better visualization
    ax.view_init(elev=20., azim=180+30)
    ax.set_title(title)

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(figsize=(12.8, 9.6), nrows=2, ncols=2,
                               subplot_kw=dict(projection='3d',
                                               computed_zorder=False))

plot_kernel(ax1, kernel_vals_32_1,  r'$k_{3/2, \kappa}($base_point, other_points1$)$')
plot_kernel(ax2, kernel_vals_32_2,  r'$k_{3/2, \kappa}($base_point, other_points2$)$')
plot_kernel(ax3, kernel_vals_inf_1, r'$k_{\infty, \kappa}($base_point, other_points1$)$')
plot_kernel(ax4, kernel_vals_inf_2, r'$k_{\infty, \kappa}($base_point, other_points2$)$')


# Display the plot
plt.show()
../_images/examples_SpecialOrthogonal_29_0.png

Feature Maps and Sampling

Here we show how to get an approximate finite-dimensional feature map for heat and Matérn kernels on the sphere, i.e. such \(\phi\) that

\[k(x, x') \approx \langle \phi(x), \phi(x') \rangle_{\mathbb{R}^M}.\]

This might be useful for speeding up computations. We showcase this below by showing how to efficiently sample the Gaussian process \(\mathrm{GP}(0, k)\).

For a brief theoretical introduction into feature maps, see this documentation page.

Defining a Feature Map

The simplest way to get an approximate finite-dimensional feature map is to use the default_feature_map function from geometric_kernels.kernels. It has an optional keyword argument num which determines the number of features, the \(M\) above. Below we rely on the default value of num.

[13]:
from geometric_kernels.kernels import default_feature_map

feature_map = default_feature_map(kernel=kernel)

The resulting feature_map is a function that takes the array of inputs and parameters of the kernel. There is also an optional parameter normalize that determines if \(\langle \phi(x), \phi(x) \rangle_{\mathbb{R}^M} \approx 1\) or not. For the (hyper)sphere, normalize follows the standard behavior of MaternKarhunenLoeveKernel, being True by default.

feature_map outputs a tuple. Its second element is \(\phi(x)\) evaluated at all inputs \(x\). Its first element is either None for determinstic feature maps, or contains the updated key for randomized feature maps which take key as a keyword argument. For default_feature_map on a SpecialOrthogonal space, the first element is key since the feature map is random.

In the next cell, we evaluate the feature map at random points, using params_32 as kernel parameters. We check the basic property of the feature map: \(k(x, x') \approx \langle \phi(x), \phi(x') \rangle_{\mathbb{R}^M}\).

[14]:
# xs are random points from above
key, embedding = feature_map(xs, params_32, key=key)

print('xs (shape = %s):\n%s' % (xs.shape, xs))
print('')
print('emedding (shape = %s):\n%s' % (embedding.shape, embedding))

kernel_mat_32  = kernel.K(params_32,  xs, xs)
kernel_mat_32_alt = np.matmul(embedding, embedding.T)

print('')
print('||k(xs, xs) - phi(xs) * phi(xs)^T|| =', np.linalg.norm(kernel_mat_32 - kernel_mat_32_alt))
xs (shape = (10, 3, 3)):
[[[-0.83118121 -0.53251727  0.15988481]
  [-0.05989292 -0.20013482 -0.97793604]
  [ 0.55276635 -0.82241803  0.13445429]]

 [[-0.24549041 -0.96836999 -0.04465438]
  [-0.07519823 -0.02690221  0.99680565]
  [-0.96647798  0.24806416 -0.06621548]]

 [[-0.7316939   0.30139255  0.61138087]
  [-0.32058557  0.63938043 -0.69886877]
  [-0.6015388  -0.7073579  -0.37120866]]

 [[-0.64400808 -0.75505391 -0.12307395]
  [-0.75449949  0.60029278  0.2652906 ]
  [-0.1264283   0.26370852 -0.95628118]]

 [[ 0.16603267 -0.8784055   0.44814834]
  [ 0.98529484  0.12918269 -0.11182982]
  [ 0.04033892  0.46012565  0.88693695]]

 [[-0.1476533   0.58885089  0.79464025]
  [ 0.06351094  0.80743353 -0.58653001]
  [-0.9869979  -0.03613474 -0.1566187 ]]

 [[ 0.76324266 -0.64597696  0.01320642]
  [ 0.2130557   0.23233043 -0.94901519]
  [ 0.60997369  0.72714259  0.31495357]]

 [[-0.79343507 -0.45989196 -0.3986981 ]
  [-0.08361101  0.73119258 -0.67702778]
  [ 0.60288472 -0.50384203 -0.61860587]]

 [[-0.24647287  0.67082793  0.69945766]
  [ 0.81370207 -0.24879919  0.5253455 ]
  [ 0.52644094  0.69863356 -0.48453183]]

 [[ 0.75167902  0.6026576   0.26792249]
  [-0.62726116  0.7787669   0.00809659]
  [-0.2037697  -0.17414341  0.96340645]]]

emedding (shape = (10, 60000)):
[[ 0.00311364 -0.00034424 -0.00806244 ...  0.00067188  0.00035029
  -0.00050742]
 [ 0.00326345 -0.00158993 -0.00669235 ...  0.00054075 -0.00202368
  -0.00101374]
 [ 0.00324336 -0.00663689  0.00528191 ...  0.00065511  0.00066912
  -0.00075673]
 ...
 [ 0.00307407 -0.00409234 -0.00107197 ...  0.00077925  0.00054604
  -0.00066446]
 [ 0.0032015   0.00351986 -0.01087902 ... -0.00049863 -0.00064331
   0.00060825]
 [ 0.00310574  0.00242796 -0.01031697 ... -0.00082779 -0.0002594
   0.00067754]]

||k(xs, xs) - phi(xs) * phi(xs)^T|| = 0.061406706061729016

Efficient Sampling using Feature Maps

GeometricKernels provides a simple tool to efficiently sample (without incurring cubic costs) the Gaussian process \(f \sim \mathrm{GP}(0, k)\), based on an approximate finite-dimensional feature map \(\phi\). The underlying machinery is briefly discussed in this documentation page.

The function sampler from geometric_kernels.sampling takes in a feature map and, optionally, the keyword argument s that specifies the number of samples to generate. It returns a function we name sample_paths. Since we are going to compute each of the two samples at two different sets of inputs, other_points1 and other_points2, we make sure the randomness if fixed by using the make_deterministic function.

sample_paths operates much like feature_map above: it takes in the points where to evaluate the samples and kernel parameters. Additionally, it takes in the keyword argument key that specifies randomness in the JAX style. However, in our specific case, this keyword argument is not needed as it is automatically supplied by the make_deterministic wrapper. sample_paths returns a tuple. Its first element is the updated key. Its second element is an array containing the value of samples evaluated at the input points.

[15]:
from geometric_kernels.sampling import sampler
from geometric_kernels.utils.utils import make_deterministic

# introduce random state for reproducibility (optional)
# `key` is jax's terminology
key = np.random.RandomState(seed=1234)

sample_paths = make_deterministic(sampler(feature_map, s=2), key)

# new random state is returned along with the samples
key, samples = sample_paths(xs, params_32)

print('Two samples evaluated at the xs are:')
print(samples)
Two samples evaluated at the xs are:
[[ 0.07279943 -0.17314709]
 [-0.91676587  0.45252729]
 [ 1.22318893  1.11679705]
 [-1.49580416  1.86520088]
 [-0.04944704 -0.38410612]
 [-0.73135949 -0.48286388]
 [-0.2092536  -0.20690319]
 [ 0.70462855  1.40441825]
 [-0.03731635 -0.68776107]
 [ 0.70267061 -0.09092921]]

Visualizing Samples

Here we visualize samples as functions on the sphere.

[16]:
key, samples_other_points1 = sample_paths(other_points1, params_32)
key, samples_other_points2 = sample_paths(other_points2, params_32)

sample1_other_points1 = samples_other_points1[:, 0]
sample2_other_points1 = samples_other_points1[:, 1]
sample1_other_points2 = samples_other_points2[:, 0]
sample2_other_points2 = samples_other_points2[:, 1]

x_circle = np.cos(angles)
y_circle = np.sin(angles)
z_circle = np.zeros_like(angles) # z=0 for the circle

def plot_sample(ax, values, title):
    # Draw the unit circle
    ax.plot(x_circle, y_circle, z_circle, linestyle='dashed', color='gray')
    # Plot the new function evaluated only on the unit circle
    ax.plot(x_circle, y_circle, values, color='b')
    # Set the viewing angle for better visualization
    ax.view_init(elev=20., azim=180+30)
    ax.set_title(title)

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(figsize=(12.8, 9.6), nrows=2, ncols=2,
                               subplot_kw=dict(projection='3d',
                                               computed_zorder=False))

plot_sample(ax1, samples_other_points1[:, 0], r'Sample #1: $f(\cdot)$ for $\cdot$ in other_points1, $f \sim \mathrm{GP}(0, k_{3/2, \kappa})$')
plot_sample(ax2, samples_other_points2[:, 0], r'Sample #1: $f(\cdot)$ for $\cdot$ in other_points2, $f \sim \mathrm{GP}(0, k_{3/2, \kappa})$')
plot_sample(ax3, samples_other_points1[:, 1], r'Sample #2: $f(\cdot)$ for $\cdot$ in other_points1, $f \sim \mathrm{GP}(0, k_{3/2, \kappa})$')
plot_sample(ax4, samples_other_points2[:, 1], r'Sample #2: $f(\cdot)$ for $\cdot$ in other_points2, $f \sim \mathrm{GP}(0, k_{3/2, \kappa})$')


# Display the plot
plt.show()
../_images/examples_SpecialOrthogonal_39_0.png

Citation

If you are using Lie groups and GeometricKernels, please consider citing

@article{mostowsky2024,
      title = {The GeometricKernels Package: Heat and Matérn Kernels for Geometric Learning on Manifolds, Meshes, and Graphs},
      author = {Peter Mostowsky and Vincent Dutordoir and Iskander Azangulov and Noémie Jaquier and Michael John Hutchinson and Aditya Ravuri and Leonel Rozo and Alexander Terenin and Viacheslav Borovitskiy},
      year = {2024},
      journal = {arXiv:2407.08086},
}
@article{azangulov2024a,
  title = {Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case},
  author = {Azangulov, Iskander and Smolensky, Andrei and Terenin, Alexander and Borovitskiy, Viacheslav},
  journal = {Journal of Machine Learning Research},
  year = {2024},
  volume = {25},
  number = {280},
  pages = {1--52},
}
[ ]: