Source code for geometric_kernels.feature_maps.deterministic
r"""This module provides the :class:`DeterministicFeatureMapCompact`, aKarhunen-Loève expansion-based feature map for those:class:`~.spaces.DiscreteSpectrumSpace`\ s, for which the eigenpairsare explicitly known."""importlabasBfrombeartype.typingimportDict,Optional,Tuplefromgeometric_kernels.feature_maps.baseimportFeatureMapfromgeometric_kernels.spacesimportDiscreteSpectrumSpace
[docs]classDeterministicFeatureMapCompact(FeatureMap):r""" Deterministic feature map for :class:`~.spaces.DiscreteSpectrumSpace`\ s for which the actual eigenpairs are explicitly available. :param space: A :class:`~.spaces.DiscreteSpectrumSpace` space. :param num_levels: Number of levels in the kernel approximation. """def__init__(self,space:DiscreteSpectrumSpace,num_levels:int):fromgeometric_kernels.kernels.karhunen_loeveimportMaternKarhunenLoeveKernelself.space=spaceself.num_levels=num_levelsself.kernel=MaternKarhunenLoeveKernel(space,num_levels)self.repeated_eigenvalues=space.get_repeated_eigenvalues(self.kernel.num_levels)
[docs]def__call__(self,X:B.Numeric,params:Dict[str,B.Numeric],normalize:Optional[bool]=None,**kwargs,)->Tuple[None,B.Numeric]:""" :param X: [N, ...] points in the space to evaluate the map on. :param params: Parameters of the kernel (length scale and smoothness). :param normalize: Normalize to have unit average variance (if omitted or None, follows the standard behavior of :class:`~.kernels.MaternKarhunenLoeveKernel`). :param ``**kwargs``: Unused. :return: `Tuple(None, features)` where `features` is an [N, O] array, N is the number of inputs and O is the dimension of the feature map. .. note:: The first element of the returned tuple is the simple None and should be ignored. It is only there to support the abstract interface: for some other subclasses of :class:`FeatureMap`, this first element may be an updated random key. """spectrum=self.kernel._spectrum(self.repeated_eigenvalues,nu=params["nu"],lengthscale=params["lengthscale"],)normalize=normalizeor(normalizeisNoneandself.kernel.normalize)ifnormalize:normalizer=B.sum(spectrum)spectrum=spectrum/normalizerweights=B.transpose(B.power(spectrum,0.5))# [1, M]eigenfunctions=self.kernel.eigenfunctions(X,**params)# [N, M]features=B.cast(B.dtype(params["lengthscale"]),eigenfunctions)*B.cast(B.dtype(params["lengthscale"]),weights)# [N, M]returnNone,features