Source code for geometric_kernels.feature_maps.random_phase

r"""
This module provides the random phase-based feature maps.

Specifically, it provides a random phase-based feature map for
:class:`~.spaces.DiscreteSpectrumSpace`\ s for which the
:doc:`addition theorem </theory/addition_theorem>`-like basis functions
are explicitly available while the actual eigenpairs may remain implicit.

It also provides a basic random phase-based feature map for
:class:`~.spaces.NoncompactSymmetricSpace`\ s. It should be used unless a more
specialized per-space implementation is available, like the ones in the module
:mod:`geometric_kernels.feature_maps.rejection_sampling`.
"""

import lab as B
from beartype.typing import Dict, Optional, Tuple

from geometric_kernels.feature_maps.base import FeatureMap
from geometric_kernels.feature_maps.probability_densities import base_density_sample
from geometric_kernels.kernels.karhunen_loeve import MaternKarhunenLoeveKernel
from geometric_kernels.lab_extras import complex_like, from_numpy, is_complex
from geometric_kernels.spaces import DiscreteSpectrumSpace, NoncompactSymmetricSpace


[docs] class RandomPhaseFeatureMapCompact(FeatureMap): r""" Random phase feature map for :class:`~.spaces.DiscreteSpectrumSpace`\ s for which the :doc:`addition theorem </theory/addition_theorem>`-like basis functions are explicitly available while actual eigenpairs may be implicit. :param space: A :class:`~.spaces.DiscreteSpectrumSpace` space. :param num_levels: Number of levels in the kernel approximation. :param num_random_phases: Number of random phases used in the generalized random phase Fourier features technique. """ def __init__( self, space: DiscreteSpectrumSpace, num_levels: int, num_random_phases: int = 3000, ): self.space = space self.num_levels = num_levels self.num_random_phases = num_random_phases self.kernel = MaternKarhunenLoeveKernel(space, num_levels)
[docs] def __call__( self, X: B.Numeric, params: Dict[str, B.Numeric], *, key: B.RandomState, normalize: Optional[bool] = None, **kwargs, ) -> Tuple[B.RandomState, B.Numeric]: """ :param X: [N, ...] points in the space to evaluate the map on. :param params: Parameters of the kernel (length scale and smoothness). :param key: Random state, either `np.random.RandomState`, `tf.random.Generator`, `torch.Generator` or `jax.tensor` (which represents a random state). .. note:: For any backend other than `jax`, passing the same `key` twice does not guarantee that the feature map will be the same each time. This is because these backends' random state has... a state. To evaluate the same (including randomness) feature map on different inputs, you can either save/restore state manually each time or use the helper function :func:`~.utils.make_deterministic` which does this for you. :param normalize: Normalize to have unit average variance (if omitted or None, follows the standard behavior of :class:`kernels.MaternKarhunenLoeveKernel`). :param ``**kwargs``: Unused. :return: `Tuple(key, features)` where `features` is an [N, O] array, N is the number of inputs and O is the dimension of the feature map; `key` is the updated random key for `jax`, or the similar random state (generator) for any other backends. """ key, random_phases = self.space.random(key, self.num_random_phases) # [O, D] eigenvalues = self.kernel.eigenvalues_laplacian spectrum = self.kernel._spectrum( eigenvalues, nu=params["nu"], lengthscale=params["lengthscale"], ) if is_complex(X): dtype = complex_like(params["lengthscale"]) else: dtype = B.dtype(params["lengthscale"]) weights = B.power(spectrum, 0.5) # [L, 1] random_phases_b = B.cast(dtype, from_numpy(X, random_phases)) phi_product = self.kernel.eigenfunctions.phi_product( X, random_phases_b, **params ) # [N, O, L] embedding = B.cast(dtype, phi_product) # [N, O, L] weights_t = B.cast(dtype, B.transpose(weights)) features = B.reshape(embedding * weights_t, B.shape(X)[0], -1) # [N, O*L] if is_complex(features): features = B.concat(B.real(features), B.imag(features), axis=1) normalize = normalize or (normalize is None and self.kernel.normalize) if normalize: normalizer = B.sqrt(B.sum(features**2, axis=-1, squeeze=False)) features = features / normalizer return key, features
[docs] class RandomPhaseFeatureMapNoncompact(FeatureMap): r""" Basic random phase feature map for :class:`~.spaces.NoncompactSymmetricSpace`\ s (importance sampling based). This feature map should not be used if a space-specific alternative exists. :param space: A :class:`~.spaces.NoncompactSymmetricSpace` space. :param num_random_phases: Number of random phases to use. :param shifted_laplacian: If True, assumes that the kernels are defined in terms of the shifted Laplacian. This often makes Matérn kernels more flexible by widening the effective range of the length scale parameter. Defaults to True. """ def __init__( self, space: NoncompactSymmetricSpace, num_random_phases: int = 3000, shifted_laplacian: bool = True, ): self.space = space self.num_random_phases = num_random_phases self.shifted_laplacian = shifted_laplacian
[docs] def __call__( self, X: B.Numeric, params: Dict[str, B.Numeric], *, key: B.RandomState, normalize: Optional[bool] = True, **kwargs, ) -> Tuple[B.RandomState, B.Numeric]: """ :param X: [N, ...] points in the space to evaluate the map on. :param params: Parameters of the feature map (length scale and smoothness). :param key: Random state, either `np.random.RandomState`, `tf.random.Generator`, `torch.Generator` or `jax.tensor` (which represents a random state). .. note:: For any backend other than `jax`, passing the same `key` twice does not guarantee that the feature map will be the same each time. This is because these backends' random state has... a state. To evaluate the same (including randomness) feature map on different inputs, you can either save/restore state manually each time or use the helper function :func:`~.utils.make_deterministic` which does this for you. :param normalize: Normalize to have unit average variance (`True` by default). :param ``**kwargs``: Unused. :return: `Tuple(key, features)` where `features` is an [N, O] array, N is the number of inputs and O is the dimension of the feature map; `key` is the updated random key for `jax`, or the similar random state (generator) for any other backends. """ # default behavior if normalize is None: normalize = True key, random_phases = self.space.random_phases( key, self.num_random_phases ) # [O, <axes_p>] key, random_lambda = base_density_sample( key, (self.num_random_phases,), # [O, 1] params, self.space.dimension, self.space.rho, self.shifted_laplacian, ) # [O, P] random_phases_b = B.expand_dims( B.cast(B.dtype(params["lengthscale"]), from_numpy(X, random_phases)) ) # [1, O, <axes_p>] random_lambda_b = B.expand_dims( B.cast(B.dtype(params["lengthscale"]), from_numpy(X, random_lambda)) ) # [1, O, P] X_b = B.expand_dims(X, axis=-1 - self.space.num_axes) # [N, 1, <axes>] p = self.space.power_function(random_lambda_b, X_b, random_phases_b) # [N, O] c = self.space.inv_harish_chandra(random_lambda_b) # [1, O] features = B.concat(B.real(p) * c, B.imag(p) * c, axis=-1) # [N, 2*O] if normalize: normalizer = B.sqrt(B.sum(features**2, axis=-1, squeeze=False)) features = features / normalizer return key, features