Source code for geometric_kernels.feature_maps.rejection_sampling

"""
This module provides the :class:`RejectionSamplingFeatureMapHyperbolic` and the
:class:`RejectionSamplingFeatureMapSPD`, rejection sampling-based feature maps
for :class:`~.spaces.Hyperbolic` and
:class:`~.spaces.SymmetricPositiveDefiniteMatrices`, respectively.
"""

import lab as B
from beartype.typing import Dict, Optional, Tuple

from geometric_kernels.feature_maps.base import FeatureMap
from geometric_kernels.feature_maps.probability_densities import (
    hyperbolic_density_sample,
    spd_density_sample,
)
from geometric_kernels.lab_extras import from_numpy
from geometric_kernels.spaces import Hyperbolic, SymmetricPositiveDefiniteMatrices


[docs] class RejectionSamplingFeatureMapHyperbolic(FeatureMap): """ Random phase feature map for the :class:`~.spaces.Hyperbolic` space based on the rejection sampling algorithm. :param space: A :class:`~.spaces.Hyperbolic` space. :param num_random_phases: Number of random phases to use. :param shifted_laplacian: If True, assumes that the kernels are defined in terms of the shifted Laplacian. This often makes Matérn kernels more flexible by widening the effective range of the length scale parameter. Defaults to True. """ def __init__( self, space: Hyperbolic, num_random_phases: int = 3000, shifted_laplacian: bool = True, ): self.space = space self.num_random_phases = num_random_phases self.shifted_laplacian = shifted_laplacian
[docs] def __call__( self, X: B.Numeric, params: Dict[str, B.Numeric], *, key: B.RandomState, normalize: Optional[bool] = True, **kwargs, ) -> Tuple[B.RandomState, B.Numeric]: """ :param X: [N, D] points in the space to evaluate the map on. :param params: Parameters of the feature map (length scale and smoothness). :param key: Random state, either `np.random.RandomState`, `tf.random.Generator`, `torch.Generator` or `jax.tensor` (which represents a random state). .. note:: For any backend other than `jax`, passing the same `key` twice does not guarantee that the feature map will be the same each time. This is because these backends' random state has... a state. To evaluate the same (including randomness) feature map on different inputs, you can either save/restore state manually each time or use the helper function :func:`~.utils.make_deterministic` which does this for you. :param normalize: Normalize to have unit average variance (`True` by default). :param ``**kwargs``: Unused. :return: `Tuple(key, features)` where `features` is an [N, O] array, N is the number of inputs and O is the dimension of the feature map; `key` is the updated random key for `jax`, or the similar random state (generator) for any other backends. """ # Default behavior if normalize is None: normalize = True key, random_phases = self.space.random_phases( key, self.num_random_phases ) # [O, D] key, random_lambda = hyperbolic_density_sample( key, (self.num_random_phases, B.rank(self.space.rho)), params, self.space.dimension, self.shifted_laplacian, ) # [O, 1] random_phases_b = B.expand_dims( B.cast(B.dtype(params["lengthscale"]), from_numpy(X, random_phases)) ) # [1, O, D] random_lambda_b = B.expand_dims( B.cast(B.dtype(params["lengthscale"]), from_numpy(X, random_lambda)) ) # [1, O, 1] X_b = B.expand_dims(X, axis=-2) # [N, 1, D] p = self.space.power_function(random_lambda_b, X_b, random_phases_b) # [N, O] features = B.concat(B.real(p), B.imag(p), axis=-1) # [N, 2*O] if normalize: normalizer = B.sqrt(B.sum(features**2, axis=-1, squeeze=False)) features = features / normalizer return key, features
[docs] class RejectionSamplingFeatureMapSPD(FeatureMap): """ Random phase feature map for the :class:`~.spaces.SymmetricPositiveDefiniteMatrices` space based on the rejection sampling algorithm. :param space: A :class:`~.spaces.SymmetricPositiveDefiniteMatrices` space. :param num_random_phases: Number of random phases to use. :param shifted_laplacian: If True, assumes that the kernels are defined in terms of the shifted Laplacian. This often makes Matérn kernels more flexible by widening the effective range of the length scale parameter. Defaults to True. """ def __init__( self, space: SymmetricPositiveDefiniteMatrices, num_random_phases: int = 3000, shifted_laplacian: bool = True, ): self.space = space self.num_random_phases = num_random_phases self.shifted_laplacian = shifted_laplacian
[docs] def __call__( self, X: B.Numeric, params: Dict[str, B.Numeric], *, key: B.RandomState, normalize: Optional[bool] = True, **kwargs, ) -> Tuple[B.RandomState, B.Numeric]: """ :param X: [N, D, D] points in the space to evaluate the map on. :param params: Parameters of the feature map (length scale and smoothness). :param key: Random state, either `np.random.RandomState`, `tf.random.Generator`, `torch.Generator` or `jax.tensor` (which represents a random state). .. note:: For any backend other than `jax`, passing the same `key` twice does not guarantee that the feature map will be the same each time. This is because these backends' random state has... a state. To evaluate the same (including randomness) feature map on different inputs, you can either save/restore state manually each time or use the helper function :func:`~.utils.make_deterministic` which does this for you. :param normalize: Normalize to have unit average variance (`True` by default). :param ``**kwargs``: Unused. :return: `Tuple(key, features)` where `features` is an [N, O] array, N is the number of inputs and O is the dimension of the feature map; `key` is the updated random key for `jax`, or the similar random state (generator) for any other backends. """ # Default behavior for normalization if normalize is None: normalize = True key, random_phases = self.space.random_phases( key, self.num_random_phases ) # [O, D, D] key, random_lambda = spd_density_sample( key, (self.num_random_phases,), params, self.space.degree, self.space.rho, self.shifted_laplacian, ) # [O, D] random_phases_b = B.expand_dims( B.cast(B.dtype(params["lengthscale"]), from_numpy(X, random_phases)) ) # [1, O, D, D] random_lambda_b = B.expand_dims( B.cast(B.dtype(params["lengthscale"]), from_numpy(X, random_lambda)) ) # [1, O, D] X_b = B.expand_dims(X, axis=-3) # [N, 1, D, D] p = self.space.power_function(random_lambda_b, X_b, random_phases_b) # [N, O] features = B.concat(B.real(p), B.imag(p), axis=-1) # [N, 2*O] if normalize: normalizer = B.sqrt(B.sum(features**2, axis=-1, squeeze=False)) features = features / normalizer return key, features