Source code for geometric_kernels.frontends.gpytorch

"""
GPyTorch kernel wrapper.

A tutorial on how to use this wrapper to run Gaussian process regression on
a geometric space is available in the
:doc:`frontends/GPyTorch.ipynb </examples/frontends/GPyTorch>` notebook.
"""

import gpytorch
import numpy as np
import torch
from beartype.typing import List, Union

from geometric_kernels.kernels import BaseGeometricKernel
from geometric_kernels.spaces import Space


[docs] class GPyTorchGeometricKernel(gpytorch.kernels.Kernel): r""" GPyTorch wrapper for :class:`~.kernels.BaseGeometricKernel`. A tutorial on how to use this wrapper to run Gaussian process regression on a geometric space is available in the :doc:`frontends/GPyTorch.ipynb </examples/frontends/GPyTorch>` notebook. .. note:: Remember that the `base_kernel` itself does not store any of its hyperparameters (like `lengthscale` and `nu`). If you do not set them manually—when initializing the object or after, by setting the properties—this wrapper will use the values provided by `base_kernel.init_params`. .. note:: As customary in GPyTorch, this wrapper does not maintain a variance (outputscale) parameter. To add it, use :code:`gpytorch.kernels.ScaleKernel(GPyTorchGeometricKernel(...))`. :param base_kernel: The kernel to wrap. :param lengthscale: Initial value of the length scale. If not given or set to None, uses the default value of the `base_kernel`, as provided by its `init_params` method. :param nu: Initial value of the smoothness parameter nu. If not given or set to None, uses the default value of the `base_kernel`, as provided by its `init_params` method. :param trainable_nu: Whether or not the parameter nu is to be optimized over. Cannot be True if nu is equal to infinity. You cannot change this parameter after constructing the object. Defaults to False. :raises ValueError: If trying to set nu = infinity together with trainable_nu = True. .. todo:: Handle `ard_num_dims` properly when base_kernel is a product kernel. """ has_lengthscale = True
[docs] def __init__( self, base_kernel: BaseGeometricKernel, lengthscale: Union[float, torch.Tensor, np.ndarray] = None, nu: Union[float, torch.Tensor, np.ndarray] = None, trainable_nu: bool = False, **kwargs, ): super().__init__(**kwargs) self.base_kernel = base_kernel default_params = base_kernel.init_params() if nu is None: nu = default_params["nu"] if type(nu) is float: nu = np.array([nu]) if lengthscale is None: lengthscale = default_params["lengthscale"] if type(lengthscale) is float: lengthscale = np.array([lengthscale]) lengthscale = torch.as_tensor(lengthscale) nu = torch.as_tensor(nu) self._trainable_nu = trainable_nu if self._trainable_nu and torch.isinf(nu): raise ValueError("Cannot have trainable `nu` parameter with infinite value") self.lengthscale = lengthscale if self._trainable_nu: self.register_parameter( name="raw_nu", parameter=torch.nn.Parameter(torch.tensor(1.0)) ) self.register_constraint("raw_nu", gpytorch.constraints.Positive()) self.nu = nu else: self.register_buffer("raw_nu", nu)
@property def space(self) -> Union[Space, List[Space]]: r"""Alias to the `base_kernel`\ s space property.""" return self.base_kernel.space @property def nu(self) -> torch.Tensor: """The smoothness parameter""" if self._trainable_nu: return self.raw_nu_constraint.transform(self.raw_nu) else: return self.raw_nu @nu.setter def nu(self, value): if self._trainable_nu: if torch.isinf(value): raise ValueError( "Cannot have infinite `nu` value when trainable_nu is True" ) value = torch.as_tensor(value).to(self.raw_nu) self.initialize(raw_nu=self.raw_nu_constraint.inverse_transform(value)) else: self.raw_nu = torch.as_tensor(value)
[docs] def forward( self, x1: torch.Tensor, x2: torch.Tensor, diag: bool = False, last_dim_is_batch: bool = False, **kwargs, ) -> torch.Tensor: """ Evaluate the covariance matrix K(x1, x2). :param x1: First batch of inputs. :param x2: Second batch of inputs. :param diag: If set to True, ignores `x2` and returns the diagonal of K(x1, x1). :param last_dim_is_batch: Ignored. :return: The covariance matrix K(x1, x2) or, if diag=True, the diagonal of the covariance matrix K(x1, x1). .. todo:: Support GPyTorch-style output batching. """ params = dict(lengthscale=self.lengthscale.flatten(), nu=self.nu.flatten()) if diag: return self.base_kernel.K_diag(params, x1) return self.base_kernel.K(params, x1, x2)