Source code for geometric_kernels.spaces.circle

"""
This module provides the :class:`Circle` space and the respective
:class:`~.eigenfunctions.Eigenfunctions` subclass :class:`SinCosEigenfunctions`.
"""

import lab as B
from beartype.typing import List, Optional

from geometric_kernels.lab_extras import dtype_double, from_numpy
from geometric_kernels.spaces.base import DiscreteSpectrumSpace
from geometric_kernels.spaces.eigenfunctions import (
    Eigenfunctions,
    EigenfunctionsWithAdditionTheorem,
)
from geometric_kernels.utils.utils import chain


[docs] class SinCosEigenfunctions(EigenfunctionsWithAdditionTheorem): """ Eigenfunctions of the Laplace-Beltrami operator on the circle correspond to the Fourier basis, i.e. sines and cosines. Levels are the whole eigenspaces. The zeroth eigenspace is one-dimensional, all the other eigenspaces are of dimension 2. :param num_levels: The number of levels. """ def __init__(self, num_levels: int): assert num_levels >= 1 self._num_eigenfunctions = num_levels * 2 - 1 self._num_levels = num_levels
[docs] def __call__(self, X: B.Numeric, **kwargs) -> B.Numeric: N = B.shape(X)[0] theta = X const = 2.0**0.5 values = [] for level in range(self.num_levels): if level == 0: values.append(B.ones(B.dtype(X), N, 1)) else: freq = 1.0 * level values.append(const * B.cos(freq * theta)) values.append(const * B.sin(freq * theta)) return B.concat(*values, axis=1)[:, : self._num_eigenfunctions] # [N, M]
def _addition_theorem( self, X: B.Numeric, X2: Optional[B.Numeric] = None, **kwargs ) -> B.Numeric: r""" Returns the result of applying the addition theorem to sum over all the outer products of eigenfunctions within a level, for each level. .. math:: \sin(l \theta_1) \sin(l \theta_2) + \cos(l \theta_1) \cos(l \theta_2 = N_l \cos(l (\theta_1 - \theta_2)), where $N_l = 1$ for $l = 0$, else $N_l = 2$. :param X: The first of the two batches of points to evaluate the phi product at. An array of shape [N, <axis>], where N is the number of points and <axis> is the shape of the arrays that represent the points in a given space. :param X2: The second of the two batches of points to evaluate the phi product at. An array of shape [N2, <axis>], where N2 is the number of points and <axis> is the shape of the arrays that represent the points in a given space. Defaults to None, in which case X is used for X2. :param ``**kwargs``: Any additional parameters. :return: An array of shape [N, N2, L]. """ theta1, theta2 = X, X2 angle_between = theta1[:, None, :] - theta2[None, :, :] # [N, N2, 1] freqs = B.range(B.dtype(X), self.num_levels) # [L] values = B.cos(freqs[None, None, :] * angle_between) # [N, N2, L] values = ( B.cast( B.dtype(X), from_numpy(X, self.num_eigenfunctions_per_level)[None, None, :], ) * values ) return values # [N, N2, L] def _addition_theorem_diag(self, X: B.Numeric, **kwargs) -> B.Numeric: """ :return: Array `result`, such that result[n, l] = 1 if l = 0 or 2 otherwise. """ N = X.shape[0] ones = B.ones(B.dtype(X), N, self.num_levels) # [N, L] value = ones * B.cast( B.dtype(X), from_numpy(X, self.num_eigenfunctions_per_level)[None, :] ) return value # [N, L] @property def num_eigenfunctions(self) -> int: return self._num_eigenfunctions @property def num_levels(self) -> int: return self._num_levels @property def num_eigenfunctions_per_level(self) -> List[int]: """ The number of eigenfunctions per level. :return: List `result`, such that result[l] = 1 if l = 0 or 2 otherwise. """ return [1 if level == 0 else 2 for level in range(self.num_levels)]
[docs] class Circle(DiscreteSpectrumSpace): r""" The GeometricKernels space representing the standard unit circle, denoted by $\mathbb{S}_1$ (as the one-dimensional hypersphere) or $\mathbb{T}$ (as the one-dimensional torus). The elements of this space are represented by angles, scalars from $0$ to $2 \pi$. Levels are the whole eigenspaces. The zeroth eigenspace is one-dimensional, all the other eigenspaces are of dimension 2. .. note:: The :doc:`example notebook on the torus </examples/Torus>` involves this space. .. admonition:: Citation If you use this GeometricKernels space in your research, please consider citing :cite:t:`borovitskiy2020`. """ def __str__(self): return "Circle()" @property def dimension(self) -> int: """ :return: 1. """ return 1
[docs] def get_eigenfunctions(self, num: int) -> Eigenfunctions: """ Returns the :class:`~.SinCosEigenfunctions` object with `num` levels. :param num: Number of levels. """ return SinCosEigenfunctions(num)
[docs] def get_eigenvalues(self, num: int) -> B.Numeric: eigenvalues = B.range(num) ** 2 # [num,] return B.reshape(eigenvalues, -1, 1) # [num, 1]
[docs] def get_repeated_eigenvalues(self, num: int) -> B.Numeric: eigenfunctions = self.get_eigenfunctions(num) eigenvalues_per_level = B.range(num) ** 2 # [num,] eigenvalues = chain( eigenvalues_per_level, eigenfunctions.num_eigenfunctions_per_level, ) # [M,] return B.reshape(eigenvalues, -1, 1) # [M, 1]
[docs] def random(self, key: B.RandomState, number: int): key, random_points = B.random.rand(key, dtype_double(key), number, 1) # [N, 1] random_points *= 2 * B.pi return key, random_points
@property def element_shape(self): """ :return: [1]. """ return [1] @property def element_dtype(self): """ :return: B.Float. """ return B.Float