Source code for geometric_kernels.spaces.hypercube_graph

"""
This module provides the :class:`HypercubeGraph` space and the respective
:class:`~.eigenfunctions.Eigenfunctions` subclass :class:`WalshFunctions`.
"""

from itertools import combinations
from math import comb

import lab as B
import numpy as np
from beartype.typing import List, Optional

from geometric_kernels.lab_extras import dtype_double, float_like
from geometric_kernels.spaces.base import DiscreteSpectrumSpace
from geometric_kernels.spaces.eigenfunctions import (
    Eigenfunctions,
    EigenfunctionsWithAdditionTheorem,
)
from geometric_kernels.utils.special_functions import (
    kravchuk_normalized,
    walsh_function,
)
from geometric_kernels.utils.utils import chain, hamming_distance, log_binomial


[docs] class WalshFunctions(EigenfunctionsWithAdditionTheorem): r""" Eigenfunctions of graph Laplacian on the hypercube graph $C^d$ whose nodes are index by binary vectors in $\{0, 1\}^d$ are the Walsh functions $w_T: C^d \to \{-1, 1\}$ given by .. math:: w_T(x_0, .., x_{d-1}) = (-1)^{\sum_{i \in T} x_i}, enumerated by all possible subsets $T$ of the set $\{0, .., d-1\}$. Levels are the whole eigenspaces, comprising all Walsh functions $w_T$ with the same cardinality of $T$. The addition theorem for these is based on certain discrete orthogonal polynomials called Kravchuk polynomials. :param dim: Dimension $d$ of the hypercube graph. :param num_levels: Specifies the number of levels of the Walsh functions. """ def __init__(self, dim: int, num_levels: int) -> None: assert num_levels <= dim + 1, "The number of levels should be at most dim+1." self.dim = dim self._num_levels = num_levels self._num_eigenfunctions: Optional[int] = None # To be computed when needed.
[docs] def __call__(self, X: B.Bool, **kwargs) -> B.Float: return B.stack( *[ walsh_function(self.dim, list(cur_combination), X) for level in range(self.num_levels) for cur_combination in combinations(range(self.dim), level) ], axis=1, )
def _addition_theorem( self, X: B.Numeric, X2: Optional[B.Numeric] = None, **kwargs ) -> B.Numeric: if X2 is None: X2 = X hamming_distances = hamming_distance(X, X2) values = [] kravchuk_normalized_j_minus_1, kravchuk_normalized_j_minus_2 = None, None for level in range(self.num_levels): cur_kravchuk_normalized = kravchuk_normalized( self.dim, level, hamming_distances, kravchuk_normalized_j_minus_1, kravchuk_normalized_j_minus_2, ) # [N, N2] kravchuk_normalized_j_minus_2 = kravchuk_normalized_j_minus_1 kravchuk_normalized_j_minus_1 = cur_kravchuk_normalized values.append( comb(self.dim, level) * cur_kravchuk_normalized[..., None] # [N, N2, 1] ) return B.concat(*values, axis=-1) # [N, N2, L] def _addition_theorem_diag(self, X: B.Numeric, **kwargs) -> B.Numeric: """ These are certain easy to compute constants. """ values = [ comb(self.dim, level) * B.ones(float_like(X), *X.shape[:-1], 1) # [N, 1] for level in range(self.num_levels) ] return B.concat(*values, axis=1) # [N, L]
[docs] def weighted_outerproduct( self, weights: B.Numeric, X: B.Numeric, X2: Optional[B.Numeric] = None, # type: ignore **kwargs, ) -> B.Numeric: if X2 is None: X2 = X hamming_distances = hamming_distance(X, X2) result = B.zeros(B.dtype(weights), X.shape[0], X2.shape[0]) # [N, N2] kravchuk_normalized_j_minus_1, kravchuk_normalized_j_minus_2 = None, None for level in range(self.num_levels): cur_kravchuk_normalized = kravchuk_normalized( self.dim, level, hamming_distances, kravchuk_normalized_j_minus_1, kravchuk_normalized_j_minus_2, ) kravchuk_normalized_j_minus_2 = kravchuk_normalized_j_minus_1 kravchuk_normalized_j_minus_1 = cur_kravchuk_normalized # Instead of multiplying weights by binomial coefficients, we sum their # logs and then exponentiate the result for numerical stability. # Furthermore, we save the computed Kravchuk polynomials for next iterations. result += ( B.exp(B.log(weights[level]) + log_binomial(self.dim, level)) * cur_kravchuk_normalized ) return result # [N, N2]
[docs] def weighted_outerproduct_diag( self, weights: B.Numeric, X: B.Numeric, **kwargs ) -> B.Numeric: # Instead of multiplying weights by binomial coefficients, we sum their # logs and then exponentiate the result for numerical stability. result = sum( B.exp(B.log(weights[level]) + log_binomial(self.dim, level)) * B.ones(float_like(X), *X.shape[:-1], 1) for level in range(self.num_levels) ) # [N, 1] return B.reshape(result, *result.shape[:-1]) # [N,]
@property def num_eigenfunctions(self) -> int: if self._num_eigenfunctions is None: self._num_eigenfunctions = sum(self.num_eigenfunctions_per_level) return self._num_eigenfunctions @property def num_levels(self) -> int: return self._num_levels @property def num_eigenfunctions_per_level(self) -> List[int]: return [comb(self.dim, level) for level in range(self.num_levels)]
[docs] class HypercubeGraph(DiscreteSpectrumSpace): r""" The GeometricKernels space representing the d-dimensional hypercube graph $C^d = \{0, 1\}^d$, the combinatorial space of binary vectors of length $d$. The elements of this space are represented by d-dimensional boolean vectors. Levels are the whole eigenspaces. .. note:: A tutorial on how to use this space is available in the :doc:`HypercubeGraph.ipynb </examples/HypercubeGraph>` notebook. .. note:: Since the degree matrix is a constant multiple of the identity, all types of the graph Laplacian coincide on the hypercube graph up to a constant, we choose the normalized Laplacian for numerical stability. :param dim: Dimension $d$ of the hypercube graph $C^d$, a positive integer. .. admonition:: Citation If you use this GeometricKernels space in your research, please consider citing :cite:t:`borovitskiy2023`. """ def __init__(self, dim: int): if dim < 1: raise ValueError("dim must be a positive integer.") self.dim = dim def __str__(self): return f"HypercubeGraph({self.dim})" @property def dimension(self) -> int: """ Returns d, the `dim` parameter that was passed down to `__init__`. .. note: Although this is a graph, and graphs are generally treated as 0-dimensional throughout GeometricKernels, we make an exception for HypercubeGraph. This is because it helps maintain good behavior of Matérn kernels with the usual values of the smoothness parameter nu, i.e. nu = 1/2, nu = 3/2, nu = 5/2. """ return self.dim
[docs] def get_eigenfunctions(self, num: int) -> Eigenfunctions: """ Returns the :class:`~.WalshFunctions` object with `num` levels. :param num: Number of levels. """ return WalshFunctions(self.dim, num)
[docs] def get_eigenvalues(self, num: int) -> B.Numeric: eigenvalues = np.array( [ 2 * level / self.dim # we assume normalized Laplacian (for numerical stability) for level in range(num) ] ) return B.reshape(eigenvalues, -1, 1) # [num, 1]
[docs] def get_repeated_eigenvalues(self, num: int) -> B.Numeric: eigenvalues_per_level = self.get_eigenvalues(num) eigenfunctions = WalshFunctions(self.dim, num) eigenvalues = chain( B.squeeze(eigenvalues_per_level), eigenfunctions.num_eigenfunctions_per_level, ) # [J,] return B.reshape(eigenvalues, -1, 1) # [J, 1]
[docs] def random(self, key: B.RandomState, number: int) -> B.Numeric: r""" Sample uniformly random points on the hypercube graph $C^d$. Always returns [N, D] boolean array of the `key`'s backend. :param key: Either `np.random.RandomState`, `tf.random.Generator`, `torch.Generator` or `jax.tensor` (representing random state). :param number: Number N of samples to draw. :return: An array of `number` uniformly random samples on the space. """ key, random_points = B.random.rand( key, dtype_double(key), number, self.dimension ) random_points = random_points < 0.5 return key, random_points
@property def element_shape(self): """ :return: [d]. """ return [self.dimension] @property def element_dtype(self): """ :return: B.Bool. """ return B.Bool