Source code for geometric_kernels.spaces.hypersphere

"""
This module provides the :class:`Hypersphere` space and the respective
:class:`~.eigenfunctions.Eigenfunctions` subclass :class:`SphericalHarmonics`.
"""

import geomstats as gs
import lab as B
import numpy as np
from beartype.typing import List, Optional
from spherical_harmonics import SphericalHarmonics as _SphericalHarmonics
from spherical_harmonics.fundamental_set import num_harmonics

from geometric_kernels.lab_extras import dtype_double
from geometric_kernels.spaces.base import DiscreteSpectrumSpace
from geometric_kernels.spaces.eigenfunctions import (
    Eigenfunctions,
    EigenfunctionsWithAdditionTheorem,
)
from geometric_kernels.utils.utils import chain


[docs] class SphericalHarmonics(EigenfunctionsWithAdditionTheorem): r""" Eigenfunctions of the Laplace-Beltrami operator on the hypersphere correspond to the spherical harmonics. Levels are the whole eigenspaces. :param dim: Dimension of the hypersphere. E.g. dim = 2 means the standard 2-dimensional sphere in $\mathbb{R}^3$. We only support dim >= 2. For dim = 1, use :class:`~.spaces.Circle`. :param num_levels: Specifies the number of levels of the spherical harmonics. """ def __init__(self, dim: int, num_levels: int) -> None: self.dim = dim self._num_levels = num_levels self._num_eigenfunctions: Optional[int] = None # To be computed when needed. self._spherical_harmonics = _SphericalHarmonics( dimension=dim + 1, degrees=self._num_levels, allow_uncomputed_levels=True, ) @property def num_computed_levels(self) -> int: num = 0 for level in self._spherical_harmonics.harmonic_levels: if level.is_level_computed: num += 1 else: break return num
[docs] def __call__(self, X: B.Numeric, **kwargs) -> B.Numeric: return self._spherical_harmonics(X)
def _addition_theorem( self, X: B.Numeric, X2: Optional[B.Numeric] = None, **kwargs ) -> B.Numeric: r""" Returns the result of applying the addition theorem to sum over all the outer products of eigenfunctions within a level, for each level. The case of the hypersphere is explicitly considered on doc:`this documentation page </theory/addition_theorem>`. :param X: The first of the two batches of points to evaluate the phi product at. An array of shape [N, <axis>], where N is the number of points and <axis> is the shape of the arrays that represent the points in a given space. :param X2: The second of the two batches of points to evaluate the phi product at. An array of shape [N2, <axis>], where N2 is the number of points and <axis> is the shape of the arrays that represent the points in a given space. Defaults to None, in which case X is used for X2. :param ``**kwargs``: Any additional parameters. :return: An array of shape [N, N2, L]. """ values = [ level.addition(X, X2)[..., None] # [N, N2, 1] for level in self._spherical_harmonics.harmonic_levels ] return B.concat(*values, axis=-1) # [N, N2, L] def _addition_theorem_diag(self, X: B.Numeric, **kwargs) -> B.Numeric: """ These are certain easy to compute constants. """ values = [ level.addition_at_1(X) # [N, 1] for level in self._spherical_harmonics.harmonic_levels ] return B.concat(*values, axis=1) # [N, L] @property def num_eigenfunctions(self) -> int: if self._num_eigenfunctions is None: self._num_eigenfunctions = sum(self.num_eigenfunctions_per_level) return self._num_eigenfunctions @property def num_levels(self) -> int: return self._num_levels @property def num_eigenfunctions_per_level(self) -> List[int]: return [num_harmonics(self.dim + 1, level) for level in range(self.num_levels)]
[docs] class Hypersphere(DiscreteSpectrumSpace, gs.geometry.hypersphere.Hypersphere): r""" The GeometricKernels space representing the d-dimensional hypersphere $\mathbb{S}_d$ embedded in the (d+1)-dimensional Euclidean space. The elements of this space are represented by (d+1)-dimensional vectors of unit norm. Levels are the whole eigenspaces. .. note:: We only support d >= 2. For d = 1, use :class:`~.spaces.Circle`. .. note:: A tutorial on how to use this space is available in the :doc:`Hypersphere.ipynb </examples/Hypersphere>` notebook. :param dim: Dimension of the hypersphere $\mathbb{S}_d$. Should satisfy dim >= 2. For dim = 1, use :class:`~.spaces.Circle`. .. admonition:: Citation If you use this GeometricKernels space in your research, please consider citing :cite:t:`borovitskiy2020`. """ def __init__(self, dim: int): if dim < 2: raise ValueError("Only dim >= 2 is supported. For dim = 1, use Circle.") super().__init__(dim=dim) self.dim = dim def __str__(self): return f"Hypersphere({self.dim})" @property def dimension(self) -> int: """ Returns d, the `dim` parameter that was passed down to `__init__`. """ return self.dim
[docs] def get_eigenfunctions(self, num: int) -> Eigenfunctions: """ Returns the :class:`~.SphericalHarmonics` object with `num` levels. :param num: Number of levels. """ return SphericalHarmonics(self.dim, num)
[docs] def get_eigenvalues(self, num: int) -> B.Numeric: eigenfunctions = SphericalHarmonics(self.dim, num) eigenvalues = np.array( [ level.eigenvalue() for level in eigenfunctions._spherical_harmonics.harmonic_levels ] ) return B.reshape(eigenvalues, -1, 1) # [num, 1]
[docs] def get_repeated_eigenvalues(self, num: int) -> B.Numeric: eigenfunctions = SphericalHarmonics(self.dim, num) eigenvalues_per_level = self.get_eigenvalues(num) eigenvalues = chain( B.squeeze(eigenvalues_per_level), eigenfunctions.num_eigenfunctions_per_level, ) # [J,] return B.reshape(eigenvalues, -1, 1) # [J, 1]
[docs] def ehess2rhess( self, x: B.NPNumeric, egrad: B.NPNumeric, ehess: B.NPNumeric, direction: B.NPNumeric, ) -> B.NPNumeric: """ Riemannian Hessian along a given direction from the Euclidean Hessian. Used to test that the heat kernel does indeed solve the heat equation. :param x: A point on the d-dimensional hypersphere. :param egrad: Euclidean gradient of a function defined in a neighborhood of the hypersphere, evaluated at the point `x`. :param ehess: Euclidean Hessian of a function defined in a neighborhood of the hypersphere, evaluated at the point `x`. :param direction: Direction to evaluate the Riemannian Hessian at. A tangent vector at `x`. :return: A [dim]-shaped array that contains Hess_f(x)[direction], the value of the Riemannian Hessian of the function evaluated at `x` along the `direction`. See :cite:t:`absil2008` for mathematical details. """ normal_gradient = egrad - self.to_tangent(egrad, x) return ( self.to_tangent(ehess, x) - self.metric.inner_product(x, normal_gradient, x) * direction )
[docs] def random(self, key: B.RandomState, number: int) -> B.Numeric: """ Sample uniformly random points on the hypersphere. Always returns [N, D+1] float64 array of the `key`'s backend. :param key: Either `np.random.RandomState`, `tf.random.Generator`, `torch.Generator` or `jax.tensor` (representing random state). :param number: Number N of samples to draw. :return: An array of `number` uniformly random samples on the space. """ key, random_points = B.random.randn( key, dtype_double(key), number, self.dimension + 1 ) # (N, d+1) random_points /= B.sqrt( B.sum(random_points**2, axis=1, squeeze=False) ) # (N, d+1) return key, random_points
@property def element_shape(self): """ :return: [d+1]. """ return [self.dimension + 1] @property def element_dtype(self): """ :return: B.Float. """ return B.Float